When Is a Network Epidemic Hard to Eliminate?

نویسندگان

  • Kimon Drakopoulos
  • Asuman E. Ozdaglar
  • John N. Tsitsiklis
چکیده

We consider the propagation of a contagion process (“epidemic”) on a network and study the problem of dynamically allocating a fixed curing budget to the nodes of the graph, at each time instant. For bounded degree graphs, we provide a lower bound on the expected time to extinction under any such dynamic allocation policy, in terms of a combinatorial quantity that we call the resistance of the set of initially infected nodes, the available budget, and the number of nodes n. Specifically, we consider the case of bounded degree graphs, with the resistance growing linearly in n. We show that if the curing budget is less than a certain multiple of the resistance, then the expected time to extinction grows exponentially with n. As a corollary, if all nodes are initially infected and the CutWidth of the graph grows linearly, while the curing budget is less than a certain multiple of the CutWidth, then the expected time to extinction grows exponentially in n. The combination of the latter with our prior work establishes a fairly sharp phase transition on the expected time to extinction (sublinear versus exponential) based on the relation between the CutWidth and the curing budget.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models

The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This   work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...

متن کامل

Elimination of Hard-Nonlinearities Destructive Effects in Control Systems Using Approximate Techniques

Many of the physical phenomena, like friction, backlash, drag, and etc., which appear in mechanical systems are inherently nonlinear and have destructive effects on the control systems behavior. Generally, they are modeled by hard nonlinearities. In this paper, two different methods are proposed to cope with the effects of hard nonlinearities which exist in friction various models. Simple inver...

متن کامل

A Review of Epidemic Forecasting Using Artificial Neural Networks

Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...

متن کامل

Scheduling Single-Load and Multi-Load AGVs in Container Terminals

In this paper, three solutions for scheduling problem of the Single-Load and Multi-Load Automated Guided Vehicles (AGVs) in Container Terminals are proposed. The problem is formulated as Constraint Satisfaction and Optimization. When capacity of the vehicles is one container, the problem is a minimum cost flow model. This model is solved by the highest performance Algorithm, i.e. Network Simple...

متن کامل

Infrared Counter-Countermeasure Efficient Techniques using Neural Network, Fuzzy System and Kalman Filter

This paper presents design and implementation of three new Infrared Counter-Countermeasure (IRCCM) efficient methods using Neural Network (NN), Fuzzy System (FS), and Kalman Filter (KF). The proposed algorithms estimate tracking error or correction signal when jamming occurs. An experimental test setup is designed and implemented for performance evaluation of the proposed methods. The methods v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2017